
Reviewed Papers

Improving the Teaching of
Object-Oriented Design Knowledge

Javier Garzás Mario Piattini
Kybele Consulting and Kybele research Alarcos Research Group.

Rey Juan Carlos University Escuela Superior de Informática - University of
Castilla-La Mancha. Dpto. De Lenguajes II

Univeridad rey Juan Carlos Ronda de Calatrava, s/n. 13071, Ciudad Real, Spain
Mario.Piattini@uclm.esMadrid, Spain

Javier.Garzas@kybeleconsulting.com

Abstract: In the general sphere of the teaching of software engineering concepts, it can be noted that there are very
few pieces of work dealing with how to get across, through teaching, the practical experience that has been built up on
the subject of object-oriented design. The few works that do exist focus on design patterns. Pattern catalogues,
however, do not completely resolve the problem of imparting the experience about object-oriented design, an area
where it is clear that the greatest benefit derived from the patterns is achieved when their designers are already-
experienced. What is more, other elements associated with object-oriented knowledge, such as principles, heuristics,
best practices, bad smells, etc., are components related to practical knowledge of design. These are barely taken into
consideration, however. In an effort to solve these problems, we put forward an ontology which brings together and
integrates object-oriented design which improves teaching, amongst other things. It makes the great quantity of
knowledge that has been built up clearer and brings it together into a united whole. It is thus possible to create
catalogues of integrated knowledge.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented programming; D.2.2
[Software Engineering] Design tools and techniques---Object-oriented design tools

General Terms: Design
Keywords: Teaching, Object-Oriented, Design, Knowledge

1. MOTIVATION
In recent times the software engineering community has
paid a great deal of attention to the question of how to
organize its knowledge, as well as on how to go about
converting this into a syllabus plan. Addressing this issue,
[1] comments on how a study plan dealing with concepts
related to software engineering should include five
complementary elements.

o Principles: Lasting concepts about a particular area.
o Practices: problem-solving techniques which those

working in the field apply regularly and consciously.
o Applications: areas of specialization, where principles

and practices are best expressed, in the most explicit
way.

o Tools: An up-to-date appraisal of the products which aid
in the application of principles and practices.

o Mathematics: The formal basis on which all that has
been explained above is based.

In the specific field of object-oriented design (OOD),

the elements we have mentioned above are just as
important in defining a syllabus which will be propitious

for teaching this subject. We are aware that OOD is one of
the key elements for those being taught software
engineering. Thus the relevance of all we say in this paper
should be underlined. In fact the empirical study by [2]
states that software engineering students themselves
suggest that one way in which educational establishments
could improve their services would be to offer courses on
design. In this study the students see design as the greatest
challenge in the quest for programmers to be efficient. In a
similar vein, [3] comments that there are three main ideas
which should be taken into account when teaching about
OO:

o Show the overall context, instead of just the

programming or structures of simple designs.
o Show how, starting from the requirements, one can get

to the design and eventually to programming.
o Show the techniques which make it possible to detect

when the models are good ones.

Nevertheless, despite the fact that it is clear that OOD
teaching plays a highly important part and that the main

inroads — SIGCSE Bulletin - 108 - Volume 39, Number 4 2007 December

Reviewed Papers

o To provide an educational framework ideas on how to teach it have been identified, a complete
way of linking the great amount of practical knowledge on
OOD (“principles and practices”, to use the terminology of
[1]) with in-class learning has not really been created. In
the study carried out by [2] we can also note that in
answering the question “How did you learn object
technology?”, some 89% of those surveyed replied that
they were self-taught. What this suggests, according to
[2],is that either OO is not seen as high priority or that the
training received by students is not the most suitable.

o To capture experience in an objective way.

Educators do, however, often find themselves
discouraged in the job of teaching OOD concepts,
especially when the students are not ready to learn them, in
many instances [8]. There is, therefore, an evident need to
bring to bear some mechanisms which allow students to
apply patterns, along with the rest of the elements that are
associated with OOD knowledge. We need a way of
ensuring that students have mastered the basic concepts of
OOD and that they have evolved with these as their starting
point, to go on from there to be able to create real world
designs that are complex, scalable and reusable.

In the field of OOD, patterns are the most popular
element when using accumulated knowledge. In the last
few years they have been built in as components of many
plans of study in software engineering. Writers such as [4]
remark that teaching design patterns is a challenging task,
where it is not only necessary to give instruction about the
structure of the solution offered by a design pattern. It is
also vital that the student should understand when and
where a pattern can be applied. We know that although
patterns are of great importance, they do not fully resolve
the problem of imparting practical experience in OOD. So
[5] reminds us of how experience gained from the
incorporation of patterns in education syllabuses has
demonstrated two things. These conclusions are firstly that
the isolated presentation of a pattern and its format is not
effective in the case of students who are faced with patterns
for the first time and secondly that these students do not
indeed see the value of a pattern.

With a view to solving the problems set out above, we
propose an ontology on OOD, as well as a catalogue which
brings together elements of knowledge in OOD such as
principles, heuristics, best practices, etc. The use of an
ontology improves the teacher’s preparation and his or her
ability to get across concepts which many teachers are very
familiar with in the field of OOD but which they find
difficult to convey to the student. [9].

2. ONTOLOGY FOR THE IMPROVING OF
TEACHING KNOWLEDGE IN OOD
An ontology supposes a common vocabulary for those who
need to share information in a given domain.[10]. The use
of an ontology helps to (1) share a common understanding
of information, (2) re-use knowledge, (3) make
assumptions starting from a more explicit basis of
knowledge, (4) separate domain knowledge from
operational knowledge, and (5) analyse the domain
knowledge.

It is on similar lines that [6] make the point that when
patterns are learnt only from focusing on them as pattern
only tells us what to do, but not when to do it, or why.

There is yet another issue in relation to what we have
just outlined. It is that, even if we pass over the problems
which the teacher faces when trying to integrate patterns
into the teaching of OOD, we hit up against another
sizeable difficulty: knowledge about OOD consists of much
more than just knowledge about patterns. It is made up of
many other components such as principles, best practices,
refactorings, etc. These are all elements which offer
information based on experience, but which are at the same
time diffuse and lacking in clear definition. The problems
they present affect their application in practice and thus the
teaching of them in OOD.

When constructing an ontology that integrates and
inter-relates OOD knowledge, we can begin by observing
how the components of that knowledge may be organised
in groups, thanks to similarities that exist between them.
So, in spite of the fact that there are many associated OOD
terms (patterns, principles heuristics, bad smells, best
practices, etc), we have been able to observe that they may
all be grouped together in two sets- declarative and
operative.

The declarative elements are concepts that describe how
to face a given problem: components such as heuristics,
patterns, bad smells etc, are found in this group. Within this
set of declarative elements, however, different sub-groups
can be noted. So, for example, pattern catalogues such as
those of [11] are applicable to all projects.

There are very few pieces of work which touch on the
problem of how to teach the student all the knowledge that
has been gathered in OOD. Amongst the small number that
exist we might highlight that of [7], who tell us how they
use design heuristics to give support to teaching methods,
with the following objectives: But in real projects we will need to use other elements

of knowledge, and we will require, for example,
technological knowledge (patterns for J2EE or .Net
principles) or knowledge associated with a specific domain
(real time, integration, etc.).Thus we see how declarative
knowledge may be made up of three sub-categories:
general, technological and domain knowledge.

o To give more thrust to the spreading and sharing of

experience in design.
o To provide the student with a vision of what a good

design is.
o To create awareness of software quality, in aspects such

as maintainability, re-use and so on.

inroads — SIGCSE Bulletin - 109 - Volume 39, Number 4 2007 December

Reviewed Papers

 On the other hand, despite the existence of a large
amount of terminology and irrespective of patterns, it is
obvious that elements such as heuristics, principles, bad
smells, best practices and such like have a common
structure which coincides with that of a rule. That is to say,
they offer a recommendation depending on the fulfilling of
a condition. We can then group all these elements of
knowledge together, under the term ”rule”. It should be
underlined that rules are different from patterns, since rules
are based on natural language which is always more
ambiguous, while patterns are more formalised and their
description is always broader in scope.

To sum up on this point, elements which are declarative
in character can be divided into three groups: general,
technological and domain. These in turn are each divided
into rules and patterns (see Fig. 1 at the end of this article
where the ontology is seen in UML notation.)

Apart from the declarative knowledge we also find
operative elements, which are elements that build up
knowledge with respect to operations or processes so as to
carry out changes in a design. Refactorings fit into this
group directly. (These can be specified as parameterized
program transformations which at the same time preserve
the functionality of the program [12]).

There is another aspect to bear in mind, which is that
there are relationships between knowledge elements. It is
complicated to see these without a clear division and
classification of the knowledge elements, but once they are
classified it can be seen that:

o Refactorings build up knowledge about how to

introduce design elements systematically. The elements
of declarative knowledge (rules and patterns) are
incorporated into the design by operative knowledge
(Refactorings). Thus we can affirm that declarative
knowledge is introduced by declarative knowledge.

o Between each rule-pattern there are two types of
relationships: rules imply the use of patterns and
patterns obey rules.

o All pattern entities (general, domain or technological),
have a reflexive relationship in which applying one
pattern may imply the use of another.

o Operative knowledge entities have reflexive
composition relationships. In other words, one
knowledge element is made up of others.

Lastly, we should take into account that there is,

associated with each one of the relationships between
knowledge entities, cardinality which defines the numerical
limits of the relationship. (See Fig.1).

3. A CATALOGUE OF GENERAL RULES FOR
OOD
This section follows the lines suggested by the ontology
presented in this paper, setting out the idea of having
integrated knowledge catalogues available to us, and

highlighting just how important that is. Special attention is
given to a catalogue of general rules whose aim is to aid in
the application and teaching of OOD, since these rules
form an important part of this subject.

In describing each of the rules, the catalogue takes as its
starting point the sections which the pattern catalogue of
[11] uses when describing a pattern and then generalises
these sections, setting them out in detail. The relationship
between rules and patterns has been put into the following
categories:

o Implies the use of [Patterns]: whenever it applies,

patterns which are necessary in the design resulting from
the application of a rule.

o It is introduced by [Refactorings]: whenever it applies,
refactorings or operations which introduce a rule into a
design.

 Another important characteristic of the catalogue is
that it identifies each rule with a name to label it
meaningfully. Care has been taken when choosing this
name, the aim being to help the student to see clearly and to
identify, as quickly as possible, where and when a rule may
be applied. The name selected depends on the condition
which triggers the rule. The present version of the
catalogue is made up of 20 rules- this number is by no
means a fixed quantity which will never experience any
changes, of course. The current list of rules is as follows:

o Rule for if there are dependencies of concrete classes.
o Rule for if an object behaves differently according to its

state.
o Rule for if a class hierarchy has many levels.
o Rule for if something is used very little or not used at

all.
o Rule for if a super class knows one of its sub-classes.
o Rule for if a class collaborates with many.
o Rule for if a change in an interface has an impact on

many clients.
o Rule for if there is no abstraction between an interface

and its implementation.
o Rule for if a super-class is concrete.
o Rule for if a service has a lot of parameters.
o Rule for if a class is large.
o Rule for if elements of the user interface are within

domain entities.
o Rule for if a class more things from another class than

from itself.
o Rule for if a class rejects something it has inherited.
o Rule for if attributes of a class are public or protected.

By way of example, in Table 1 the rule of “If between
the Interface and its Implementation there is no
Abstraction” is displayed.

inroads — SIGCSE Bulletin - 110 - Volume 39, Number 4 2007 December

Reviewed Papers

implementation and there is therefore no need to create one for each class. Rule for IF there is no abstraction between an Interface
(2) It avoids concrete classes implementing services that do not really fall and its Implementation within their responsibility.

Purpose Known Uses
We should have default implementations.

This rule can be seen in many patterns, frameworks and software systems.

Also known as Implies the use of [Patrones]
No other names are known for this Rule.

Not Applicable.

Motivation Is introduced by refactorings
No references about this Rule have been found.

As the catalogue of [13] says, this Rule can be introduced mainly with the

When designing, types or interfaces appear, in other words, special types following refactorings: Extract Interface, Extract Subclass, Extract
which represent a sub-set of operations to which a subclass may respond Superclass, Pull Up Field, Pull Up Method, Push Down Field, Push Down
without specifying how. In many cases, these interfaces may appear, for Method.
example, by the application of “Rule for IF there are dependencies of Concrete Classes”. The difference between an interface and an abstract

 class is that the former does not have any service with implementation.
If an abstraction or implementation is not introduced between an interface 4. CONCLUSIONS
and its implementation, it will often happen that, by default, each one of Very few pieces of work deal with how to teach the

accumulated practical experience in OOD. Our search in this
area has revealed numerous articles on teaching object-
orientation which generally introduce the students only to
programming concepts. There is, however, an overall tendency
to overlook OOD and it is in this sense that these works are
most lacking. What is more, the few pieces of work that do
touch on the teaching of experience in OOD focus on the
pattern element. As many authors agree, however, the concept
of pattern does not solve all the problems of design, nor is it
the only element associated with knowledge.

the classes which implement this interface will have to have this
implementation. On many occasions, this will be the same for each of the
sub-classes; the code will therefore be duplicated (one of the worst things
that can appear in a system).
On other occasions service interfaces appear (the Subject interface in an
Observer pattern [11], for instance). These may implement domain
classes. In such a case it is not so clear that a domain class should have to
implement the operations that the interface defines. This is usually
resolved by putting in, between the interface and the class which
implements it, an abstract class which joins defect implementation by
default to the majority of interface operations.
Taking into account all that has been explained above, we could think of
eliminating the interface and of leaving only the abstract class. This might Catalogues such as that of [11] are generally a major

reference for designers who already have experience [5]. A
designer who is already familiar with certain patterns will
immediately be able to apply them in solving problems.[8].

make future sub-classes of this abstract class not want this type of default
behaviour, however. Overwriting it is not a good solution, moreover (see
Rule for If a Class Rejects something of what it inherits).
Recommendation
IF between an Interface and its Implementation there is no abstraction Other elements must, then, be taken into account. These

would be such elements as principles, heuristics, best
practices, bad smells, etc. But at present these elements are is a
state in which they are hard to apply.

THEN create an abstract class with a default implementation between the
interface and the class that implements it.
Applicability
Use this rule when there is no Default Abstraction between the Interface

 To solve these problems and to systematise the teaching
of practical concepts, we have produced ontology for OOD.
The ontologies can be applied in a wide variety of contexts,
for various contexts. In the field of teaching, these can
improve communication between people. [14]. As a rule,
information on design concepts is expressed using a
vocabulary which is not very familiar and even in a format
which is not too accessible. Where this happens, ontology
provides a unified approach with a common terminology and
integrated knowledge in a given domain. The ontology of
OOD makes it possible to create integrated knowledge
catalogues, at the same time providing a model for the
teacher’s own preparation. These catalogues are thus able to
convert OOD knowledge into teaching units.

and its Implementation.

Structure
Table 1. Rule for IF there is no abstraction

between an Interface and its Implementation

Participants
Not Applicable.
Collaborations
Not Applicable.
Consequences
This rule has the following consequences: (1) It rules out the possibility of
a duplicated code occurring, since all subclasses have a default

5. ACKNOWLEDGEMENTS
This research is partially supported by the MAS project of the
General Research Council (Dirección General de
Investigación) of the Spanish Ministry of Education and
Science (TIC 2003-02737-C02-02) and ENIGMAS (Entorno
Inteligente para la Gestión del Mantenimiento Avanzado del
Software), supported by the Department of Education and
Science of the Junta de Comunidades de Castilla-La Mancha
(Regional Government of Castile-La Mancha) (PBI-05-058).

Implementation

Interface

Implementation

Abstract

Interface

inroads — SIGCSE Bulletin - 111 - Volume 39, Number 4 2007 December

Reviewed Papers

REFERENCES
[1] Meyer, B., Software engineering in the academy. Computer, 2001: p. 28-35.
[2] Mosley, P., A Taxonomy for learning object technology 2004.
[3] Smialek, M., Teaching OOAD with active lectures and brainstorms, in OOPSLA 2000 2000.
[4] Sendall, S. Gauging the Quality of Examples for Teaching Design Patterns. in "Killer Examples" for Design Patterns and Objects First

Workshop, OOPSLA (www.cse.buffalo.edu/alphonce/OOPSLA2002/KillerExamples). 2002. Seattle.
[5] Warren, I. Teaching Patterns and Software Design. in Proc. Seventh Australasian Computing Education Conference (ACE2005).

2005. Newcastle, Australia: ACS.
[6] Shalloway, A. and J. Trott, Design Patterns Explained: A New Perspective on Object-Oriented Design. 1st ed. 2001: Addison-Wesley

Professional.
[7] Gibbon, C. and C. Higgins, Teaching object-oriented design with heuristics. ACM SIGPLAN, 1996. 31(7): p. 12 - 16.
[8] Lewis, T.L. and M.B. Rosson. A measure of design readiness: using patterns to facilitate teaching introductory object-oriented design.

in 17th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (OOPSLA). 2002.
Seattle, Washington

[9] Veal, W. and J. MaKinster, Pedagogical Content Knowledge Taxonomies. Electronic Journal of Science Education, 1999. 3(4).
[10] Noy, N.F. and D.L. McGuinness, Ontology Development 101: A Guide to Creating Your First Ontology, S.K.S.L.T.R.K.-.-a.S.M.

Informatics, M.A.A.o.a. Technical Report SMI-2001-0880, and http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-
mcguinness-abstract.html, Editors. 2000.

[11] Gamma, E., et al., Design Patterns. 1995: Addison-Wesley Professional.
[12] Opdyke, W., Refactoring Object Oriented Frameworks, in Computer Science. 1992, Illinois: Urbana-Champain.
[13] Fowler, M., et al., Refactoring: Improving the Design of Existing Code. 1st edition ed. 2000: Addison-Wesley Professional.
[14] Jasper, R. and M. Uschold. A Framework for Understanding and Classifying Ontology Applications. in Twelfth Workshop on

Knowledge Acquisition Modeling and Management KAW'99. 1999. Canada.

Fig 1. Ontology of Knowledge in OOD.

Declarative

participants
collaborations

TechnologicalTechnologicalDomainDomain CommonCommon

Operative

example

RtimeRtime Integration,
SOA, Data…
Integration,
SOA, Data…

Rules

Recommen.

Patterns

structure

Rules

Recommen.

Patterns

structure

J2EE J2EE .Net .Net

Rules

Recommen.

Patterns

structure

Rules

Recommen.

Patterns

structure

implies the use of

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Fulfill

OO Micro Architectural Design Knowledge

name
intent
also know as
motivation
applicability
consequences
known uses

1..*0..*

0..* 0..* 0..* 0..* 0..* 0..*

0..* 0..*

0..*

0..* 0..*

0..* 0..* 0..* 0..*0..* 0..* 0..*

0..*0..*

Refactoring

mechanics

0..*

0..*

0..* 0..*

inroads — SIGCSE Bulletin - 112 - Volume 39, Number 4 2007 December

